Related Articles
Building an Enterprise-Level AI Agent for Document Transformation
By Yangming Li
Introduction to LlamaReport and LlamaCloud
LlamaReport is an API-first solution designed to automate the transformation of unstructured documents into structured, organization-ready reports. It offers a flexible templating system and intelligent document processing capabilities, enabling enterprises to generate comprehensive reports efficiently.
from llama_index import LlamaReport, LlamaCloud
# Initialize LlamaReport with your API key
report_agent = LlamaReport(api_key="your_api_key")
# Configure document processing
cloud_config = LlamaCloud.Config(
parsing_mode="intelligent",
supported_formats=["pdf", "pptx", "xlsx"]
)
Key Features and Technical Components
1. Intelligent Document Processing
# Document ingestion and parsing
document_processor = LlamaCloud.DocumentProcessor(config=cloud_config)
# Process multiple documents
processed_docs = document_processor.batch_process([
"report1.pdf",
"presentation.pptx",
"data.xlsx"
])
2. Template Design and Plan Generation
# Define report template
template = LlamaReport.Template.from_markdown("template.md")
# Generate report plan
plan = report_agent.create_plan(
template=template,
documents=processed_docs,
allow_human_review=True
)
3. Report Generation and AI-Assisted Editing
# Generate initial report
report = report_agent.generate_report(plan=plan)
# Apply AI-powered edits
edited_report = report_agent.apply_edits(
report=report,
style_guide="company_style_guide.md",
review_required=True
)
How LlamaReport Works
1. Document Upload & Template Definition
Source documents serve as the knowledge base for report generation. Templates can take various forms:
- Markdown templates with section-specific instructions
- Questionnaires with blank fields to fill in
- Example blog posts with template parsing instructions
- Python docstring-style comments for field extraction
# Example template definition
template = LlamaReport.Template.from_markdown("""
# Company Analysis Report
## Executive Summary
{executive_summary}
## Market Analysis
{market_analysis}
## Financial Overview
{financial_metrics}
""")
2. Plan Generation
The system constructs a plan with dependencies to ensure logical report generation:
# Generate plan with dependencies
plan = report_agent.create_plan(
template=template,
documents=processed_docs,
dependencies={
"financial_metrics": ["market_analysis"],
"executive_summary": ["market_analysis", "financial_metrics"]
}
)
3. Report Generation
Reports are generated with maximum parallelization where possible:
# Configure parallel processing
config = LlamaReport.Config(
max_parallel_blocks=4,
enable_streaming=True
)
# Generate report with progress tracking
report = report_agent.generate_report(
plan=plan,
config=config,
progress_callback=lambda x: print(f"Progress: {x}%")
)
4. AI-Assisted Editing
The system can suggest and apply intelligent edits to the generated report:
# Request and apply edits
edits = report_agent.suggest_edits(
report=report,
style_guide="company_style.md",
focus_areas=["clarity", "consistency", "tone"]
)
# Review and apply suggested edits
final_report = report_agent.apply_edits(
report=report,
edits=edits,
require_approval=True
)
Developer API Integration
LlamaReport offers a comprehensive API for seamless integration:
from llama_index.report import ReportAPI
# Initialize API client
api = ReportAPI(api_key="your_api_key")
# Stream report generation events
async for event in api.stream_report_generation(plan_id):
if event.type == "progress":
print(f"Progress: {event.data.percentage}%")
elif event.type == "completion":
report = event.data.report
Coming Soon
- Enhanced report generation quality
- Token-level streaming API options
- Expanded template library
- Comprehensive documentation
- Example notebooks and tutorials