Related Articles
Choosing the Right Statistical Test for Survey Analysis
By Yangming Li
Introduction
When analyzing survey data, choosing the right statistical test is crucial for drawing meaningful conclusions. This comprehensive guide covers three essential statistical tests, their applications, and real-world examples to help you make informed decisions in your data analysis.
1. Chi-Square Test of Independence
Data Type and Application
Used for analyzing relationships between categorical variables in survey data.
Categorical Data Examples:
- Gender: Male, Female, Non-binary
- Department: HR, IT, Marketing, Sales
- Satisfaction Level: Satisfied, Neutral, Dissatisfied
- Customer Region: North America, Europe, Asia
Sample Data Format:
Employee ID | Department | Satisfaction |
---|---|---|
1 | HR | Satisfied |
2 | IT | Dissatisfied |
3 | Marketing | Neutral |
Python Implementation:
# Create example dataset
import pandas as pd
import numpy as np
from scipy import stats
import seaborn as sns
import matplotlib.pyplot as plt
employee_data = pd.DataFrame({
'Department': ['HR', 'IT', 'Marketing', 'Sales', 'HR', 'IT'] * 5,
'Satisfaction': ['Satisfied', 'Dissatisfied', 'Neutral',
'Satisfied', 'Dissatisfied', 'Satisfied'] * 5
})
# Create contingency table
cont_table = pd.crosstab(employee_data['Department'],
employee_data['Satisfaction'])
# Perform Chi-Square test
chi_result = stats.chi2_contingency(cont_table)
# Print detailed results
print("Chi-Square Test Results:")
print(f"Chi-square statistic: {chi_result[0]:.2f}")
print(f"p-value: {chi_result[1]:.4f}")
print(f"Degrees of freedom: {chi_result[2]}")
# Visualize the contingency table
plt.figure(figsize=(10, 6))
sns.heatmap(cont_table, annot=True, fmt='d', cmap='YlOrRd')
plt.title('Department vs Satisfaction Distribution')
plt.xlabel('Satisfaction Level')
plt.ylabel('Department')
plt.tight_layout()
plt.show()
# Calculate and display percentages
percent_table = cont_table.div(cont_table.sum(axis=1), axis=0) * 100
print("\nPercentage Distribution:")
print(percent_table)
Real-World Application:
An HR department analyzed if job satisfaction varies across departments:
- Sample size: 500 employees
- Chi-square result: χ²(6) = 15.3, p = 0.018
- Finding: Significant relationship between department and satisfaction
2. T-Tests
R Implementation Example:
# Independent Samples T-Test Example
remote_data = pd.DataFrame({
'WorkType': ['Remote', 'OnSite'] * 3,
'Satisfaction': [4.5, 3.8, 4.2, 3.5, 4.0, 3.6]
})
# Perform t-test
remote_scores = remote_data[remote_data['WorkType'] == 'Remote']['Satisfaction']
onsite_scores = remote_data[remote_data['WorkType'] == 'OnSite']['Satisfaction']
t_stat, p_value = stats.ttest_ind(remote_scores, onsite_scores)
# Print results
print(f"T-statistic: {t_stat:.3f}")
print(f"P-value: {p_value:.4f}")
# Visualize comparison
plt.figure(figsize=(8, 6))
sns.boxplot(x='WorkType', y='Satisfaction', data=remote_data)
plt.title('Satisfaction Scores by Work Type')
plt.show()
3. Analysis of Variance (ANOVA)
R Implementation Example:
# ANOVA Example
store_data = pd.DataFrame({
'Location': ['A', 'B', 'C'] * 2,
'Satisfaction': [85, 78, 92, 88, 75, 95]
})
# Perform one-way ANOVA
locations = [group for _, group in store_data.groupby('Location')['Satisfaction']]
f_stat, p_value = stats.f_oneway(*locations)
# Print results
print(f"F-statistic: {f_stat:.3f}")
print(f"P-value: {p_value:.4f}")
# Post-hoc analysis
tukey = stats.tukey_hsd(*locations)
print("\nTukey HSD Results:")
print(tukey)
# Visualize results
plt.figure(figsize=(10, 6))
sns.boxplot(x='Location', y='Satisfaction', data=store_data)
plt.title('Satisfaction Scores by Store Location')
plt.show()
Choosing the Right Test: Decision Guide
Test Type | Data Type | Best For | Business Use |
---|---|---|---|
Chi-Square Test | Categorical | Understanding relationships between categorical variables | Analyzing demographic patterns, customer preferences |
T-Test | Continuous & Categorical | Comparing means between two groups | Evaluating program effectiveness, comparing groups |
ANOVA | Continuous & Multiple Categories | Comparing means across multiple groups | Analyzing differences across departments/locations |