
Principles of Computer Systems (MIT 6.826 Fall 2020)

Course Notes

Prof. Nickolai Zeldovich

Notes by Yangming Li; all rights reserved.

1 Course Overview

• Focus: Correctness of complex computer systems through principled specifications and ver-
ification techniques.

• Prerequisites: Exposure to systems (e.g., 6.033, 6.006, 6.828).
• Key Questions: What makes a system correct? How do we prove correct execution under
concurrency, faults, and optimizations?

2 Motivation and Complexity

• Concurrency: multiple threads/machines introduce nondeterminism.
• Distribution: network failures, partial machine crashes.
• Faults: power failures, disk/memory errors (fail-stop vs Byzantine).
• Performance and optimizations add subtle bugs.
• Evolution and maintenance amplify complexity.

3 Fault Tolerance and Crash Safety

3.1 Crash Safety Challenges

• Disk writes are atomic at sector granularity but not multi-block.
• System may crash at any point, leaving partial updates.
• Disk controllers may reorder buffered writes.

3.2 Write-Ahead Logging (WAL)

Ensures atomic multi-block updates via a log region:

1. Log writes: Write new block contents to log area.
2. Commit record: Update header indicating pending transaction.
3. Apply updates: Copy logged blocks to data region.
4. Cleanup: Clear header to complete transaction.

3.3 Recovery Procedure

• On reboot, read header. If transaction pending, replay log to data region.
• Replay is idempotent: reapplying writes is safe.

1



3.4 Barriers and Ordering

• Barrier between log and commit to ensure log durability before header update.
• Barrier between commit and apply to ensure header persisted before data writes.
• Barrier before cleanup to ensure data writes complete.

3.5 Optimizations and Subtleties

• Log Bypass Writes: Non-atomic data writes bypass log with careful barrier.
• Checksum Logging: Replace barrier by checksum of log region in header.
• Combination of optimizations can introduce subtle bugs (e.g., ext4 metadata leakage).

4 Principled Verification

4.1 Testing vs Model Checking vs Verification

• Testing finds bugs but cannot prove absence.
• Model checking explores state-space (limited by state explosion).
• Formal verification: code + specification + proof ensures correctness.

4.2 Verification Workflow

• Code: System implementation (e.g., file system, protocol).
• Specification: Formal definition of correctness properties.
• Proof: Manual or automated arguments that code meets spec.
• Tools: Coq, Lean, SMT solvers (Z3, CVC).

4.3 Success Stories

• AWS service design verification (Amazon engineers).
• CompCert: Verified C compiler.
• Verified cryptography in Chrome and Firefox (e.g., Ed25519, assembly generation).

5 Course Logistics

• Weekly lectures + paper discussions (paper summaries required).
• Lab assignments in Coq Proof Assistant (Fault-tolerant storage, replicated systems).
• Participation: Submit questions and answers on readings.
• Grading: Labs, paper summaries, participation.

6 Lecture: Amazon Paper Discuss & Intro to Specifications

6.1 Breakout Room Activity

Students were split into groups of 3–4 to discuss:

“The authors of the Amazon paper write formal specifications, yet do not use them to
prove code correctness. What value do these specs bring to Amazon?”

After 5 minutes, groups shared key insights:

2



• Design verification: Specs expose design-level bugs early (e.g., logic loopholes or unintended
behaviors), before any coding begins.

• Evolution support: With a spec in place, iterative changes can be validated against it,
catching regressions without full reimplementation.

• Documentation: Formal specs serve as precise, unambiguous documentation—crucial in a
large organization with many teams.

• Forcing function: Writing specs shifts focus from the “happy path” to all possible behaviors
(safety/liveness), leading to more robust designs.

6.2 Prof. Lampson’s Perspective on Specifications

1. Modularity: Decouple client code from implementation details.
2. Insight: Highlight what the system must do, abstracting away how.
3. Proof of correctness: (Later labs/papers) Show that implementation traces are a subset

of spec traces via simulation arguments.
4. Model checking: Automate bug finding by exploring reachable traces against the spec.

6.3 TLA+ Basics

• Actions are predicates on current and next state, e.g. x ′ = x+ 1.
• Non-determinism: Combine actions with ∨; if multiple enabled, behavior is unpredictable.
• Invariants: Describe reachable states; crucial to reason about code only in valid states.

6.4 Spec Writing & Verification Workflow

1. Define state variables (keep this minimal to capture client-visible behavior).
2. Specify operations (transitions) in high-level notation (sets, comprehensions, nondeterministic

choice).
3. (Optional) Perform model checking to catch bugs automatically.
4. For critical modules, derive abstraction function and perform simulation proofs:

c
code−−−→ c′ =⇒ f(c)

spec−−→ f(c′)

6.5 Key Takeaways

• Specs are not just for proofs—they drive design, documentation, and testing.
• Amazon’s use of specs + model checking trades conclusive proofs for automation and speed.
• In this course, we’ll explore both model checking (Amazon style) and full formal proofs (Coq
labs, research papers).

7 Lecture: Specifications & Abstractions

7.1 Homework Check-In

• Software Foundations exercises:

– Homeworks (Coq tutorials) straightforward once syntax is learned.
– Readings (Chapter proofs) more notation-heavy—expect greater clarity when you apply

them in labs.

3



– Tip: Pattern-match existing proofs, and use Piazza/office hours for syntax-level ques-
tions.

7.2 Why Specs & Abstractions?

• Goal: Reason about all possible executions of some code.
• Spec → Proof → Confidence:

{Pre(s) } f {Post(s′, r) }

where s, s′ are program states, r the return value.
• High-level vs. low-level views:

– State-machine view (Butler): global states → transitions, traces, invariants.
– Hoare logic view (today): function calls take s→s′, specs as pre/post predicates.

7.3 Hoare Logic Primer

• {P} f {Q}: if P (s) holds, then f terminates in s′ with Q(s′, r).
• Partial correctness: {P}f{Q} says if f returns, Q holds; total correctness adds termina-
tion.

• Sequencing rule:
{P}x {R} {R} y {Q}

{P}x; y {Q}

7.4 StaffDB Example

• Code:

def add(x):

total := total + x

count := count + 1

def average():

require count > 0

return total / count

• Low-level specs (primitives):

{⊤} read total { s′ = s ∧ r = s.total }, {⊤} write total(v) { s′.total = v, s′.count = s.count }

• Composing via sequencing: decompose add(x) into read total ; write total(t+ x); · · ·

7.5 Abstract-State Spec for StaffDB

• Spec state: h ∈ list(N) = history of inputs.
• High-level spec:

{⊤} add(x) { h′ = h[x] }, { |h| > 0 } average() { r =
∑

h
|h| }

4



7.6 Abstraction Relation

R(s, h) ≡ s.total =
∑

h ∧ s.count = |h|.

• { ∃h.R(s, h) } f { ∃h′. R(s′, h′) ∧ Φ(h, h′) }
• Layers proofs: once {R} f {Φ, R} holds, we can treat f as a single abstract step on h.

8 Discussion: Everest Paper

8.1 Breakout Group Reports

• Core challenges noted: confusion over the one-page “cryptographic game” description, the
interplay of F⋆’s memory model, and the status of Everest vs. Fully-Verified Everest.

• Key insight: They embed each real implementation call under an “ideal” oracle (the “magic
log”) and prove the same high-level API spec holds whether you use the ideal model or the
real cipher/MAC.

8.2 Magic-Log Model of Encryption

• Ideal oracle: upon encrypt(key,p), return a fresh random c; record ⟨p, c⟩ in Logkey.
• Decryption: on decrypt(key,c’), look up ⟨p, c′⟩ ∈ Logkey; return p if found, else ⊥.
• Security rationale: without the key ⇒ no access to Log , ciphertexts are uniform random.
• Analogy: one-time pad is a real-world instantiation: key = huge random pad, ciphertext =
pad⊕plaintext.

8.3 Nonce Usage

• Nonce: unique per-message, prevents replay—ensures identical plaintexts yield distinct ci-
phertexts.

• Replay protection: receiver tracks seen nonces; rejects duplicates.

8.4 Everest Project Overview

• Goal: drop-in replacement for OpenSSL/TLS stack with machine-checked correctness.
• Stack layers:

1. Crypto primitives in F⋆/Low⋆ → C (AES, ChaCha, Poly1305, etc.).
2. Verified assembly (via VEIL) for performance-critical loops.
3. Parser/Serializer (EverParse) for ASN.1, X.509, DER.
4. TLS Handshake & Record Protocol in F⋆.
5. HTTPS Interface compatible with OpenSSL API.

• Deployment: extract Low⋆→C; compile with CompCert or GCC; “drop-in” for existing
servers and clients.

8.5 Threat Model & Attacks

• Heartbleed: example of buffer-overflow in parsing; allowed arbitrary memory disclosure.
• Man-in-the-Middle (MITM): exploit certificate misuse or protocol bugs to intercept/decrypt.
• Side-channels: timing-dependent branches on secret key; mitigated by constant-time coding
and memory-access patterns.

5



• Certificate authentication: X.509 chains, root CAs, NSS trust anchors; primary source of
real-world misconfigurations.

8.6 Open Questions

• How well will Everest resist large-scale deployment attacks (phishing/MITM) versus oppor-
tunistic bugs?

• Can its F⋆ proofs scale to cover the full OpenSSL API surface without compatibility regres-
sions?

• What performance-cost trade-offs remain after enforcing constant-time and fully verified
parsers?

8.7 Limitations of Abstraction Functions

• Insufficient state: cannot record past executions (no “history”) or anticipate future choices
(no “prophecy”).

• Augmentations:

– History variables log every visited state/transition.
– Prophecy variables predict which future transition will occur.

• Completeness: any implementation–spec trace inclusion can be witnessed by combining ab-
straction, history, and prophecy variables.

8.8 Trace Inclusion: Code vs. Spec

Definition A program implements its spec if every externally visible trace of the code is also
allowed by the spec.

Safety “If the code returns a result, it satisfies the spec.”
Liveness “The code eventually returns a result (i.e. terminates).”

8.9 Sequential Example: Sorting

• Spec: relation on input/output arrays requiring the output to be a sorted permutation.
• Code: deterministic sort (e.g. quicksort) picks one allowed output.
• External trace: only initial and final arrays.
• Internal steps: pivot choices and swaps—hidden from the spec.

8.10 Simulation via Abstraction Functions

• An abstraction function f :CodeState→SpecState must satisfy:

1. ∀ t0 initial: f(t0) is initial in the spec.
2. If t

π−→ t′, then f(t)
π−→ f(t′).

• By induction, Traces(code) ⊆ Traces(spec).
• A state invariant restricts attention to reachable states.

8.11 Example: Write-Back Cache

• Spec: memory m : Addr→ Val, operations read/write.
• Code: adds a cache c : Addr ⇀ Val plus main memory m.

6



• Abstraction: overlay mem(a) = c(a) if defined, else m(a).
• Invariant: |dom(c)| = Csize is preserved by load/flush.

8.12 Extra Spec State & History Variables

• Spec: DB stores a list of inputs to compute mean/variance.
• Code: maintains only (n, sum, sum2 ).
• Solution: add a history variable h (the full list) to code; relate (n, sum, sum2 ) to fold(h) via
an invariant.

8.13 Abstraction Relations

• Generalize f to a relation R ⊆ Code× Spec.
• If (t, s) ∈ R and t

π−→ t′, then ∃ s′ with s
π−→ s′ and (t′, s′) ∈ R.

• Supports many-to-one and one-to-many state mappings.

8.14 Internal Transitions

• Code or spec may take unobservable steps (internal).
• Simulation: a code step labeled π must match a sequence of spec steps whose visible projection
is π.

8.15 Prophecy Variables

• Required when the spec makes a premature choice—e.g. dropping messages at crash time or
agreement at allow.

• A prophecy variable p is chosen up front to predict which future branch will fire.
• Formal rules ensure prophecy does not disable real code steps and preserves the external
trace.

8.16 Limitations of CompCert’s Correctness Specification

• Liveness

– Distinguishes terminate vs. diverge, but cannot decide termination (undecidable).
– No guarantees that a non-faulting program will eventually produce output.

• Performance

– No complexity or latency bounds: an efficient C algorithm may compile to a much slower
binary.

– CompCert itself may take unbounded time or memory on pathological inputs.

• Memory Safety & Undefined Behavior

– Behaviors after UB (e.g. buffer overflows, integer overflow, null-pointer dereference) are
unconstrained.

– Only safe (UB-free) C programs are in scope; no protection if the source invokes UB.

• Security Properties

– No guarantees on confidentiality or integrity (e.g. side-channel resistance, secret erasure).
– Optimizations may expose secrets or enable timing attacks.

• Application-Level Correctness

7



– Preserves C semantics, but does not verify that the application logic is correct or meets
its spec.

8.17 Static Analysis: A Lightweight Alternative

• What is static analysis?

– A “lightweight cousin” of full formal verification: no global proofs, but automatic, scal-
able checks.

– Universally adopted in industry to catch bugs early, without running the program.
– Active research—new tools and techniques emerge constantly.

• Case studies: Google FindBugs vs. Facebook Infer

– Both tools check for partial specifications (common bug patterns, API-misuse, null deref-
erences), not full program correctness.

– Co-designed with real dev workflows—tool authors work closely with engineers to choose
which properties to check.

• Spec vs. developer goals

– Full verification demands a complete spec proof; static analysis targets universal in-
variants (no null-pointer use, no unchecked user input, etc.).

– Emphasis on actionable warnings:

∗ Low “effective” false-positive rate (Google): a warning is not false if a dev fixes it.
∗ Low missed-bug rate (Facebook): focus on catching real in-the-wild defects (crashes,
security, data races).

– Feedback loop trust: compile-time review-time batch dashboards. Early, in-context
alerts build trust and drive fixes.

• Scalability via locality & compositionality

– Most checks are intra-procedural : look at a few lines or one function—fast, low overhead.
– Inter-procedural bugs (null returned deep in call chains, unsanitized user input) require

summaries:

∗ Infer automatically infers per-function “mini-specs” to scale whole-program data-
flow race detection.

– Incremental, parallel analyses: each function can be analyzed independently, then re-
composed.

• Key takeaways

– Static analysis succeeds when it solves concrete developer pain points—fast feedback,
low noise, clear fixes.

– Tools must be integrated into IDEs or code-review (compile-time ideal) to minimize
context-switch cost.

– Co–design with engineers, monitor actionable fix rates, and tune analyses (precision vs.
recall) to real workloads.

8.18 SybilFS: Specifying and Testing POSIX File Systems

• Motivation:

– Real-world file systems (ext3, HFS+, etc.) follow informal POSIX “man-page” specs.
– Goal: a precise, executable spec to drive exhaustive tests and uncover subtle bugs.

8



– Impact: influenced POSIX editors to tighten ambiguities.

• Key challenge—non-determinism:

– POSIX leaves many behaviors unspecified (e.g. error-code ordering, bytes-returned by
read(), directory-entry order).

– Concurrency in readdir()—interleaved creates/deletes yield many possible valid traces.
– Must capture “all implementations” under one spec.

• SybilFS approach:

– Lem DSL for spec:

∗ Define abstract OS state (process table, open-file map, directory contents).
∗ Label transitions: call(pid, op, args), return(pid, result), plus for reorder-
ing concurrency.

∗ Non-deterministic choice: Lem’s “|||” to enumerate all allowed outcomes.

– Workload generator:

∗ Automatically explore syscall sequences to drive corner-case behaviors.
∗ No oracle needed—SybilFS “oracle” is spec membership check.

– Online checking:

∗ Track set of possible spec states matching the observed trace so far.
∗ After each system call / return label, prune spec states whose transition label ob-
served label.

∗ Empty match set implementation–spec divergence (bug!).

• Directory iteration model:

– Maintain per-opendir() “must” and “may” sets for entries present throughout vs. those
concurrently created/deleted.

– Guarantees:

∗ “Must” entries always returned.
∗ “May” entries may or may not appear, in any order, possibly interleaved.

• Results and takeaways:

– SybilFS found both spec ambiguities and real file-system bugs in Linux, BSD, macOS.
– Precise, executable specs power stronger black-box testing than ad hoc workloads.
– Non-determinism modeling + aggressive pruning keeps state-space manageable.

8.19 Separation Logic: Foundations and Modular Reasoning

• Why Separation Logic?

– Tackles pointer-aliasing by separating conjunction (P ∗Q): asserts P,Q hold on disjoint
heap fragments.

– Enables concise local specs and proofs for heap-manipulating programs.
– Scales to concurrency (ownership transfer) and to large codebases (Facebook Infer).

• Core Assertions:

– x v: “cellx contains v.”
– P ∗Q: P holds on one part of the heap, Q on a disjoint part.
– emp: the heap is empty.
– Entailment P ⊢ Q: whenever P holds, so does Q.

9



• Inductive Predicates:

– list(x) or tree(x): describe linked structures by recursion.
– Example:

list(x)

{
x = null : emp,

x ̸= null : ∃d, z. x 7→(d, z) ∗ list(z).

– Extensions can track contents: list addr(x,L) pairs shape with stored data L.

• Specifying Procedures:

– Hoare triple: {P} C {Q} means “if P holds, then after C, Q holds.”
– Example prepend(x,a):

{ list(x) } new(r, a, x) { list(r) ∗ list(x) }.

– Garbage-collecting a tree:

{ tree(t) } delete tree(t) { emp }.

• Local Reasoning—Frame Rule:

{P} C {Q}
{P ∗R} C {Q ∗R}

(if C does not touch R).

– Modify only the footprint of P , leave R intact.
– Yields highly modular proofs—reason about one heap fragment at a time.

• Mechanization with Iris:

– Uses weakest precondition WP e{Q} instead of triples.
– Spatial context lists separating-heap hypotheses; proof tactics mutate them in-place.
– Recursive calls handled by assuming WP spec holds on subcalls.

8.20 Verified File System (FSCQ)

• Why Verify a File System?

– Critical infrastructure: all real systems persist data onto a filesystem.
– Stable spec, buggy implementations: POSIX-style behavior rarely changes, yet crashes

and subtle bugs still occur.
– Crash safety : power loss or kernel panic may strike at any point—must prove no on-disk

corruption.
– Asynchronous disk I/O : controller buffers writes unpredictably; crash may lose or reorder

pending writes.

• FSCQ Artifact

– Gallina implementation of a simple FS + logging layer.
– Coq proofs over a CrashCore logic: functional correctness and crash-recovery guarantees.
– Extraction to Haskell, compiled as a FUSE filesystem—live mountable on Linux.

• Abstract Disk Model

– Addresses 7→ lists of values: pending writes collect in order.
– read(a) returns the last entry in list ; does not drop older entries.
– write(a,v) appends v to the list at a.

10



– sync “flushes”: collapse each list to its last element only.
– crash+ recover: for each a, nondeterministically pick one entry from its list and discard

the rest.

• Logging Layer as Two Synchronous Disks

– Active disk : collect log write into a transient, synchronous “logical” disk.
– Committed disk : last-committed state, also synchronous.
– commit: atomically copy entire Active→Committed.
– recover after crash: reset Active←Committed.
– Yields all-or-nothing semantics: pending writes never leak unless commit finishes.

• Crash-Core Logic Extension

– Each operation spec carries (1) a post-condition for normal return, and (2) a crash-
condition for mid-execution failure.

– write(a,v) crash-condition: either before or after write—but never “partial” sector
update.

– Global proof of recover():

∗ Show every step’s crash-condition implies the recover pre-condition.
∗ Idempotence: recover’s crash-condition equals its pre-condition, so repeated crashes
during recovery remain safe.

8.21 Concurrency and x86 TSO

• Motivation: real-world CPUs expose weak memory behaviors—hardware optimizations
(caches, store-buffers, OOO, speculation) break the intuitive SC view.

• Sequential Consistency (SC)

– All loads and stores appear as atomic steps on a single, shared memory.
– Programmers can interleave per-thread steps but never observe “out-of-thin-air” reorder-

ings (e.g. ⟨0, 0⟩ in the classic two-store/two-load example is impossible).
– Clean abstraction, but too expensive for high performance.

• Weak Memory Toys:

– Store-buffering : stores go into a per-core buffer before hitting memory.
– Loads may read from the buffer or from main memory atomically.
– Background/driven flushes and explicit MFENCE let buffered writes propagate.
– Speculation & out-of-order execution further reorder effects unless fenced.

• TSO Abstract Machine:

– One “hardware thread” per SMT lane; each has its own store buffer.
– Load(a) atomically returns the newest pending or committed value.
– Store(a,v) enqueues (a 7→ v) in the local buffer only.
– Fence/MFENCE forces buffer→memory flush before continuing.
– LOCK-prefixed instructions perform their R/W plus buffer flush atomically.

• Litmus-Test Examples:

– Two-store/two-load “MP” test admits (0, 0) under TSO (stores sit in buffers).
– “Independent-Reads-Of-Independent-Writes” (IRIW) only fails if two readers share a

buffer—TSO forbids it with per-thread buffers.

• OS vs. Hardware Threads:

11



– OS context switch must flush a process’s buffer (or treat it as empty) when descheduling,
to preserve TSO at the user level.

– Kernel/user boundary (IRET) on x86 implicitly acts as a fence.

• Axiomatic Specs (Intel/AMD):

– Informal English “rules” + forbidden litmus tests—hard to cover all cases, and sometimes
inconsistent with actual chips.

– Contrast: TSO paper provides a crisp, formal abstract machine ideal for both reasoning
and teaching.

• Key Takeaway: TSO’s simple cartoon (per-thread store buffers + fences) captures exactly
what x86 offers—enabling correct low-level concurrency without drowning in cache/coherence/speculation
details.

8.22 Finding Concurrency Bugs (TSVD)

• Why concurrency bugs are hard:

– Coverage explosion: #threads×#interleavings grows combinatorially.
– Poor reproducibility : a rare schedule may trigger a crash once but then never recur.

• Testing vs. static analysis:

– Static analyzers (lock-set, thread-sanitizer) must infer cross-call contexts; often too im-
precise or expensive.

– Dynamic testing runs real interleavings—but must both define a “bug” and drive sched-
ules to expose it.

• Bug definition in TSV-D:

– Each TSV (thread-safety-violation) is a conflicting read/write or write/write on an API-
specified data structure.

– API authors annotate each TType with a “read set” (methods that only observe) and
“write set” (methods that mutate).

– Violation ≡ two methods from these sets run concurrently.

• No false positives (by design):

– “Bug”≡ observed violation of their TSV contract (e.g. concurrent Map.Add() vs. Map.TryGet()).
– Benign data races (e.g. counters) are excluded because only library-declared APIs are

monitored.

• Schedule-driving via delays (“traps”)

– Trap points: on each API call, record (object, op).
– Inject Sleep() before a trapped operation to amplify “near-miss” races.
– If another thread’s conflicting API runs during the sleep, report a TSV.

• Heuristics to avoid wasted delays:

– Near-miss detection: only trap when two ops on the same object occurred within Tms
in recent execution.

– Delay-inference: if delaying one op also delays its partner by ≈ T , infer they’re synchro-
nized (e.g. via a lock) and stop trapping there.

• Strengths & limits:

– Very low user effort: drop-in .NET tool finds real bugs in standard collections.

12



– Low “false alarm” rate on API-annotated data structures—over half of reported viola-
tions were fixed by developers.

– Misses bugs in un-annotated or custom APIs; may over-delay in hot paths.

8.23 Lab 3 Recitation: Crash-Safe Log

• Motivation:

1. Atomicity via write-ahead log : append all entries, then “commit” by updating a header.
2. Crash safety : on crash, recovery must see either the old log or the fully appended new

log—no torn writes.
3. API-design practice: define get, append, reset purely by postconditions, then imple-

ment from first principles.

• Logging API spec (in log api.file):

– state: list<block> (unbounded).
– get(): returns entire log (no state change).
– append(xs):

∗ May succeed (return true and extend log) or fail (return false, no change).
∗ Crash-safety : if crash occurs during append, final log is either old or old++xs.

– reset(): clears log (atomic or no-op on crash).

• Underlying disk API:

– Fixed-size array of blocks, atomic single-block read/write.
– We build multi-block append plus crash-safe commit.

• Crash-safe design (header + payload):

– On disk, block 0 stores n = current log length.
– Blocks 1..n hold valid log entries; blocks > n are garbage.
– get(): read header n, then read blocks 1..n.
– append(xs):

1. Write entries of xs into blocks n+ 1 . . . n+ |xs|.
2. Finally write updated length n+ |xs| into header.

– Crashing before header write leaves header at old n (old log); crashing after gives new
log.

– reset(): single atomic write of 0 to header.

• Pseudocode sketch: [basicstyle=] get(): n ← disk.read(0) return foldr (i from 1 to n) (++

[disk.read(i)]) []

append(xs): n ← disk.read(0) if n + |xs| + 1 > DISKSIZEthenreturnfalsefori, xinenumerate(xs) :
disk.write(n+ 1 + i, x)disk.write(0, n+ |xs|)returntrue
reset(): disk.write(0, 0)

• Verification strategy:

– Abstraction relation between disk array and logical log:

(∃n). 0 ≤ n ≤ DISK SIZE − 1 ∧
(
∀i < n. disk [i+ 1] = log [i]

)
.

– Prove get, append, reset satisfy their specs under crash semantics.
– Use loop-combinator lemmas (for range, for each) with tailored loop invariants.
– Automate common disk-update rewrites with auto rewrite with upd; discharge arith-

metic side-conditions via lia.

13



8.24 Proving Concurrency Correct

• Today’s Goals:

1. Understand how to prove a concurrent implementation refines its specification.
2. See what is easy vs. hard in concurrency proofs.
3. Learn how to build “large” atomic actions from smaller ones.

• Two Views of “Spec vs. Code”:

State-Machine View: – Global states s, atomic “steps” A(s, s′); define a trace or behav-
ior as a sequence of states.

– A spec = set of allowed traces; code ⊆ spec ⇐⇒ code’s visible traces are in spec.
– Proof by invariants: find I(s) such that

I(s0) ∧A(s, s′) =⇒ I(s′),

then I holds forever.
Language/Command View: – Primitives: pure expressions, x := e. Composition via ;,

if, while, ∥, etc.
– Semantics via weakest preconditions (or Hoare triples): wp(c,Q).
– Proofs by wp-calculus or triples rather than global invariants.

• Threads in State Machines:

– Each thread t has its own program counter pct in a large state.
– “Next” relation is

∨
tAt(s, s

′), where At fires only if pct matches.
– Invariant must hold after every thread’s step.

• Refinement/Data Abstraction:

– A mapping m : Scode → Sspec . Lift to traces pointwise.
– Code implements spec under m if ∀ τc. tracec(τc) =⇒ traces(m(τc)).
– Proved by showing initc =⇒ m−1(inits) and nextc =⇒ m−1(nexts).

• Atomic Actions:

– Hardware-provided : e.g. load/store of one word, test&set.
– By composition: group a; b into one atomic action if b “commutes” with every action in

other threads:
a; b ⊆ b; a (as sets of traces).

• Commutativity Cases:

1. Disjoint variables: actions touch different vars.
2. Producer–Consumer: only communication via put/get on a buffer.
3. Locking: a holds lock ℓ, b also requires ℓ—so b cannot interleave.
4. Abstraction: replace a complex sequence by an atomic “black-box” once proven correct.

• Mutex Acquire/Release:

– acquire(m): atomically wait for m = free, then set m = self .
– release(m): if m = self , set m = free (else havoc).
– Two-phase locking: hold all needed locks before touching shared data, then release at

end.

• Simulation Proof Sketch of atomicity for a; b:

14



– Show { ab} ⊆ { ba} by case analysis on whether the interfering action c interleaves before
or after.

– Use a relational invariant linking “a done” vs. “not yet done” in the other schedule.

• PlusCal Example:

– A simple spinlock using atomic TestAndSet:

while TestAndSet(m) = 1 do skip od;

but bad on single-CPU: no one else can release.
– A realistic multi-processor lock (Lamport’s bakery / spinlock variants):

∗ Processes numbered 1 . . . N , each with label-guarded steps.
∗ Carefully placed assertions (Assert) to encode invariants at key labels.
∗ Proof obligation: for each thread PC ℓ, every other thread’s step preserves all asserts.

• Key Takeaways:

– Always try to fit your concurrency protocol into disjoint, producer–consumer, or locking
patterns.

– If you stray into “hard” concurrency (no commuting discipline), you must do a full
correctness proof or risk elusive bugs.

– PlusCal/TLA+ give a state-machine style with invariants; the language (wp) style scales
to code-level but needs external mapping to hardware.

8.25 Reading Armada : Mechanized Concurrency Proofs

• Admin: Lab4 Options

– Default: prove replicated disk with crash safety in our current framework.
– Alternatives (notify instructors early): explore Daphne, Iris, VST, or free-form project.

• Why Armada?

– Machine-checked proofs of fine-grained concurrent code, without locks.
– Realistic x86-TSO memory model, not just sequentially consistent.
– Illustrates state-machine reasoning at scale and automation techniques.

• Proof Foundations:

Invariants –global state predicates preserved by every step.
Abstraction Relations –relate concrete state-machine transitions to high-level spec.
Mover/Reduction –classify each code step as right-/left-/both-/non-mover.

– Right-movers can be delayed past others; left-movers can be advanced earlier.
– Sequence of (rights)n(lefts) compresses into one atomic action.

• Armada Pipeline:

1. Write both spec and code in the same Armada language (plus nondet. ∗, choose).
2. Translator generates an explicit state machine: states = full memory+PCs; steps =

individual atomic transitions.
3. Developer annotates reduction strategy (regions of right/left movers, fences, TSO-elimination).
4. Proof generator emits Daphne proof scripts showing:

Tracescode ⊆ Tracesspec.

15



5. Daphne (with Z3 backend) discharges thousands of small commuting and invariant-
preservation lemmas.

• Key Mechanization Trick: “Sigma”

– Each transition is a deterministic function next(s, σ) → s′ by packaging all nondet.
choices (malloc result, thread-ID, branch ∗) into a step record σ.

– Commutativity proof becomes a simple equality check:

next(next(s, σi), σj) = next(next(s, σj), σi).

• Automation vs. Manual Proof:

– State-machine approach: many small, uniform obligations → amenable to SMT automa-
tion.

– Language-based (Iris, separation logic): fewer but more creative invariants, harder to
auto-solve.

• Next Lecture: Compare with Iris’s language-level concurrency logic and verify how its
proof style and tooling differ from the state-machine + mover approach.

8.26 Reading the Iris Blog Post

• Motivation:

– Iris embeds concurrency reasoning as a program logic, not a state machine.
– Blog post walks through a toy “bank” example to expose lock invariants, ghost state,

and iProp proof mode.
– Goals today:

1. Explain lock invariants via Go/Rust idioms and Iris’s formalization.
2. Introduce ghost variables (fractional permissions, update, splitting).
3. Read and interpret a typical Iris proof obligation (WP— Iris’s weakest-precondition

goal).

• From Functional to Concurrent Imperative:

– Original spec: transfer(bank,b,n) = new bank in pure functional style.
– Single-threaded imperative: pointers & separation logic to prove that transfer preserves

total sum.
– Näıve concurrent spec fails (interleaved transfers break “start = b” assumption).
– We want each account’s transfer to be atomic and composable with other independent

transfers.

• Lock Invariants:

– Go: convention “// m protects b1,b2”—only a comment, unenforced.
– Rust : Mutex<Balances> ties data to the lock type; scope-based unlock.
– Iris: associate each lock with an invariant P s.t.

{ lock(l)} acquire l {P} and {P} release l { lock(l)}

– Inside P one may bundle both points-to assertions and pure facts (e.g. balances sum
to 0).

• Ghost Variables & Fractional Permissions:

16



– Ghost var 7→q v holds that “ghost γ has value v with fraction q ∈ (0, 1].”
– Rules:

1. Allocation: introduce fresh γ 7→1 v.
2. Split / Combine: γ 7→1 v ⇔ γ 7→q v ∗ γ 7→1−q v.
3. Persistence: two fragments γ 7→q1 v ∗ γ 7→q2 v =⇒ v equal.
4. Update: owning γ 7→1 v lets you change to any v′.

• Bank Example in Iris:

– Two accounts b1, b2 each protected by its own lock invariant:

∃b, v. (b1 7→ b ∗ γ1 7→
1
2 v ∗□ (b = v)) ∗ (same for b2, γ2)

– Global invariant: γ1 7→
1
2 v1 ∗ γ2 7→

1
2 v2 ∗ (v1 + v2 = 0).

– transfer(n) proof outline:

1. acquire b1; acquire b2—get both lock invariants.
2. Update physical pointers: *b1 -= n; *b2 += n.
3. open both invariants to gain full ghost ownership, update γ1, γ2, then close.
4. release b2; release b1—re-establish each P , including b = v and sum 0.

– check consistency() acquires both locks, open global invariant, checks v1 + v2 = 0,
then close&release.

• Reading Iris WP Goals:

Persistent context facts duplicable across threads (is lock, invariants).
Spatial context exclusive resources (points-to, ghost perms).
WP triple mixes Iris proof-mode steps (‘iIntros, iDestruct, iCombine, . . . ‘) with stan-

dard separation logic.

• Beyond the Example:

– Custom ghost state: monotonic counters, authoritative sums, spatial region algebras.
– Atomicity specs: you can prove transfer itself is logically atomic (vs. merely safe).
– RustBelt : semantic type-soundness of Vec<T>— unsafe implementation, safe API guar-

anteed by Iris.

• Next Time: We’ll continue exploring Iris by mechanizing a small concurrent stack and seeing
how higher-order invariants and fancy updates extend these techniques.

8.27 IronFleet: Verified Distributed Systems

• Why Distributed Systems?

– Concurrency across machines
– High communication costs (e.g. cache misses or network latency)
– Partial failures—must remain available despite node crashes

• Five-Layer Verification Architecture

1. Abstract Spec (à la Lamport): global “God’s-eye” view with a visibility relation.
2. Protocol Level : hosts execute ph next actions atomically; communicate by message

sends/receives; prove a global invariant in TLA/PlusCal style.
3. Host Code: each host action is pure sequential code; prove it refines the protocol’s atomic

action via reduction (movers).

17



4. Network Model : UDP-style packets; maintain a ghost-journal of sends/receives to reason
about message flow.

5. Composition: combine host+network to get the full distributed system; then compose
refinements up to the abstract spec.

• Key Proof Technique: Reduction & Movers

– Process actions: commute with everything (both movers).
– Receive actions: right-movers (can be delayed).
– Send actions: left-movers (can be advanced).
– Any host-action matching R–→T–→L pattern is atomic by commuting out other hosts’

steps.

• Example1: Distributed Lock

– Spec: sequence of holders; each Acquire appends the holder’s ID.
– Impl: hosts send “grant” and “ack” packets with a counter; invariant tracks last Acquire

packet to reconstruct holder sequence.

• Example2: Replicated State Machine (Paxos RSM)

– Spec: behave like a single deterministic machine on a command stream.
– Protocol: classic Paxos rounds—propose, accept/quorum, learn; must preserve quorum-

intersection to ensure agreement.
– Optimizations: batching, leader election (view changes), state transfer (snapshot), reply

caching.
– Liveness under timed fairness assumptions (beyond pure asynchrony).

• Example3: Rebalancing Key–Value Store

– Data partitioned by key range; may “move” a range by sending in-flight split packets.
– Invariant: every key is either owned by exactly one host or in a pending transfer packet.
– Reliable transmission and ordering layered over UDP.

• Pragmatic Considerations

– Trust assumptions: spec, compiler/runtime, OS, hardware.
– Verified libraries for containers, marshalling, data-structure invariants.
– Ghost state for unbounded history (network journal).
– Automation trade-offs: powerful SMT vs. careful annotations; modular proofs over large

codebases.
– 4× code overhead; needs expert proof engineers; constraints on code shape for automa-

tion.

8.28 Ivy/I4: Automated Protocol Invariant Discovery

• Context: Protocol Verification

– A sub-problem of distributed-system verification, distinct from implementation correct-
ness.

– Separates “does the protocol work?” from “can I write correct code to implement it?”
– Fits into IronFleet’s five-layer stack at the protocol-level (between host code and global

spec).

• Why Protocols Are Hard

1. Unreliable Networks: messages may be lost, delayed, duplicated, reordered.

18



2. Node Failures: crashes vs. network partitions are indistinguishable; recovering state is
tricky.

3. Dynamic Membership / Byzantine Faults: (beyond I4’s scope) arbitrary misbehavior
complicates consensus.

• Ivy: SMT-Backed Protocol Checker

– User writes state relations (e.g. semaphore(s), link(c,s)).
– Defines init predicate and action transitions.
– Safety spec = predicate on reachable states (e.g. no two clients hold same lock).
– Ivy encodes: [label=()]
– Init ⇒ Invariant,
– Action preserves Invariant as Z3 queries ⇒ fully automated safety proof.

• Inductiveness vs. Safety

– Safety bubble: all states satisfying spec predicate.
– Reachable bubble: all states reachable by stepping from init.
– Spec predicate may not be inductive (closed under transitions).
– Need a stronger inductive invariant (blue bubble) satisfying: [label=()]
– init ⊆ I,
– ∀s ∈ I, s→ s′ =⇒ s′ ∈ I,
– I ⊆ spec.

• I4: Automatic Invariant Inference

– Leverages a bounded-model checker (AVR) to exhaustively explore a small instance (e.g.
1server, 2clients).

– AVR synthesizes a compact formula characterizing all reachable states in that instance.
– I4 lifts/generalizes this formula to unbounded parameters to propose a global inductive

invariant.
– Feed back into Ivy; if too weak, increase small-model bounds and repeat.

• Demo: Lock Service

– Simple client–server lock protocol in Ivy.
– Initial spec fails inductiveness test (must forbid “server still holds lock” when client

thinks it does).
– Strengthen invariant (add link(c,s) =⇒ ¬semaphore(s)).
– Ivy checks init and every action automatically in seconds.
– Add “client-to-client transfer” action; Ivy again verifies safety with no manual proof.

• Trade-Offs & Applicability

– Extremely easy to verify safety of unbounded protocols (no Coq/Tac scripting).
– Relies on: decidable fragment of logic, small-model generalization.
– Deadlock is a liveness—not safety—concern (Ivy supports some liveness via cycle-finding).
– Open question: can small-model invariant inference extend to richer concurrency proofs

(e.g. Iris/Armada)?

8.29 Verifying Software-Defined Networks

• Motivation

– Critical infrastructure: Every distributed system relies on IP/Ethernet forwarding.
– Narrow, well-scoped spec: Packet-in/packet-out behavior vs. arbitrary stateful services.

19



– High complexity : Distributed control (switches, failures, reconfiguration) hides bugs.

• Traditional Networks

– Each switch independently stores (config, routing state).
– Switches run distributed protocols (e.g. OSPF, BGP) to build forwarding tables.
– Challenges: Inconsistent configs, complex failure recovery, per-switch debugging.

• Software-Defined Networks (SDN)

– Centralized controller : Single global “brain” programs all switches.
– Data-plane switches: Fast path uses locally cached flow tables.
– Benefits: Simplified policy, hot-swap hardware, unified vendor API.
– Risks: Controller single point of failure; reconfiguration must preserve connectivity.

• NetCore/Featherweight OpenFlow

– NetCore DSL:

∗ match cond on packet headers
∗ modify primitive header fields (TTL, IP)
∗ action selects output ports
∗ union/restrict to combine rules

– Flow table IR: Ordered list of {match,modify,action} entries, resolved by priority.
– Featherweight OpenFlow : Controller–switch protocol

∗ PacketIn → controller if no match
∗ Add/DeleteFlow from controller to switch
∗ Barrier to enforce order

• Correctness via Certified Compilation

– Compile-time: NetCore
certified compiler−−−−−−−−−−→ controller binary + runtime

– Theorem: Controller+runtime ≃ NetCore spec
– Trace inclusion:

∗ Implementation traces ⊆ Spec traces (safety)
∗ Spec traces ⊆ Implementation traces (bisimulation ≈ liveness)

• Limitations & Outlook

– Static configurations: Paper models one fixed NetCore program—no dynamic updates.
– Controller reliability : Single-host performance and fault-tolerance not addressed.
– Higher-level policies: End-to-end liveness (e.g. “all flows are logged”) must be layered

atop NetCore.

8.30 Empirical Study of “Verified” Distributed Systems

• Paper goal:

– Ask : Do complex, machine-checked DS actually eliminate bugs?
– Approach: Audit three systems (IronFleet, Verdi, Chapar) for real faults.

• Why bugs persist:

– Spec gaps: What the proof assumes vs. real API behavior.
– Shim errors: Unverified “glue” layers (OS, network, I/O) violate axioms.
– Tooling faults: Build scripts or provers skip or ignore proof failures.

• Finding bugs:

20



– Fuzzing shims: Inject resource errors, partial I/O, packet loss/duplication.
– Cross-checking : Compare against alternate implementations or hand-written tests.
– Manual audit : Inspect build logs, proofs, spec comments for mismatches.

• Representative faults

IronFleet – Tooling : Build script ignores Z3 exit signals; proof errors go unnoticed.
– Spec: “Exactly-once” duplicate filtering not guaranteed by spec.

Verdi – Shim: TCP receive may yield partial or no messages; file partial writes crash on
replay.

– Tooling : Deep recursion in extracted OCaml overflowed stack (no liveness guaran-
tee).

Chapar – Shim: UDP axioms omitted packet loss/duplication; custom marshal API left
stale bytes.

– Spec: Causal-consistency invariants broken by unchecked network behavior.

• Lessons & best practices

– Lean, precise spec: Drive proofs by writing and verifying small example apps atop your
spec.

– Integral proof workflows: Always require explicit “success” outputs, not just absence of
errors.

– Harden shims: Fuzz and test every OS / network primitive; prefer narrow, verified APIs.
– Layered verification: Push boundaries sensibly—too large → complexity, too small →

unsound assumptions.
– Operational checks: Combine formal guarantees with staged rollouts, runtime monitor-

ing, and alarmed fallbacks.

8.31 Komodo: Minimal-Hardware Enclaves via Verified Monitor

• Motivation:

– Intel SGX provides secure enclaves in hardware—but is complex, hard to extend.
– Goal : Recreate enclave isolation & attestation with minimal hardware, pushing policy

into software.

• Security background:

– Isolation trades off with sharing—must authenticate who may access which resource.
– AuthN/AuthZ via guard mediating requests against system policy.
– Attestation: map concrete channels (e.g. crypto pipes) to high-level principals via

“speaks-for” chains.
– Threats: hostile OS, side-channels, induced faults, denial of service.

• Enclave architecture:

– Host (OS/VMM) is untrusted; software monitor and enclave code must enforce security.
– Monitor : tiny “baby hypervisor” mediates transitions (SMC, exceptions, interrupts) be-

tween:

∗ Normal world (untrusted OS)
∗ Enclave world (trusted code)

– Hardware support (if only against software threats):

∗ Protected RAM region (OS can’t touch).
∗ Secure control-transfer instructions in CPU.

21



∗ Root key for attestation; RNG for crypto.

• Attestation protocol:

1. attest(key): monitor returns MACHK(ms, key), binding enclave measurement ms to
signing key.

2. verify(key,ms,tag): check MAC under hardware root key HK “key speaks for ms”.
3. Chain trust: hardware key monitor enclave.

• Formal verification:

– Spec: 12 Monitor calls plus enter/exit semantics; enforces:

∗ Confidentiality : public outputs depend only on public inputs.
∗ Integrity : trusted outputs depend only on trusted inputs.

– Model : ARMmachine model in “Veil” pseudo-assembly; opaque oracles resolve non-determinism.
– Proof :

∗ Verify each Monitor transition implements spec (Dafny+Z3).
∗ Non-interference (relational refinement) over world-switch boundaries.

• Key takeaways:

– Small, verified monitor proves enclave isolation, attestation—avoids SGX microcode
complexity.

– Even tiny code bases harbor corner-case bugs—verification catches subtle “page A=pageB”
errors.

– Strong spec + minimal TCB + verified toolchain yields high assurance with modest
hardware.

8.32 Non-Interference and Confidentiality in CertiKOS

• Integrity vs. Confidentiality

– Integrity (functional correctness) ensures “no corruption” of state.
– Confidentiality means “no unauthorized disclosure” of secrets.
– Confidentiality is much harder: must prevent any leakage, not just wrong answers.

• Example: Two-Block Disk

– Block0 holds userA’s data, Block1 holds B’s.
– Näıve rule “B never reads 0” still allows many leaks (out-of-bounds reads, metadata

APIs, remappers).
– Any non-determinism in spec or implementation can be exploited to distinguish A’s

secret.

• Non-Interference as Two-Safety

– One-trace safety : “no single bad trace.”
– Two-trace safety (non-interference): for any two initial states indistinguishable to B, all

B’s observations along both executions must remain identical.
– B’s entire visible behavior—reads, outputs, syscalls—must be independent of A’s secret.

• Observation Functions

– Obsspec(p, s): what principal p is allowed to see in abstract state s.
– Obscode(p, c): what p actually observes at the implementation level.
– Must satisfy Obscode(p, c) ⊆ Obsspec(p, s) whenever c implements s.

22



• Proof Outline

1. Spec-level determinism: every abstract step from s→ s′ preserves Obsspec.
2. Lowering : if two spec states are indistinguishable, their code states remain indistin-

guishable under Obscode.
3. By induction on steps, B’s final observations cannot distinguish A’s secret.

• Challenges and Corner Cases

– Specification leaks: forgetting to include page-table layout or PID allocation in Obsspec
can break proof.

– Implementation leaks: exposing extra channels (e.g. “used-blocks” API) not modeled in
Obscode.

– Concurrency nondeterminism: context switches break the two-trace alignment → solved
by “local semantics,” collapsing other threads into a single yield step.

• Takeaways

– True confidentiality requires reasoning about pairs of executions (two-safety).
– Complete determinism (in spec & code) simplifies proofs but is often impractical.
– Designing precise observation functions is crucial: they define both allowed spec observ-

ables and actual code leakage.
– Practical non-interference for OS kernels (like CertiKOS) must handle VM mappings,

syscalls (fork/PID), and concurrency carefully.

8.33 What Formal Proofs Give—and Don’t—for Security

• Paper context

– Authors: Toby Murray (scl4 microkernel), security and verification experts.
– Genre: philosophical “meta-paper” on the gap between proved theorems and real-world

security.
– Goal: set realistic expectations for using proofs in security projects.

• Why proofs seem ideal for security

– Security is a negative goal : “no attacker can ever break in,” so every corner case matters.
– Formal proofs force you to consider all cases and eliminate human oversight.
– A concise, correct specification—if achievable—yields machine-checked confidence.

• Why proofs alone may fall short

1. Mis-modeled reality : CPU models often omit nondeterminism, timing, undocumented
registers, or rarified instructions.

2. Incomplete threat model : hardware bugs (e.g. Rowhammer), side-channels, SMM/JTAG
debug paths, physical tampering.

3. Uncaptured APIs: e.g. PID allocators, “used-blocks” queries, speculative features.
4. Specification vs. implementation drift : theorem may not say what you think, or be hard

to interpret (weeks to grok seL4’s statement!).

• Code changes and “Venn diagram” of edits

– P : changes needed to make the proof go through.
– A: changes needed for real-world security.
– P ∩A: ideal—you only change what both demand.
– P \A: proof-overhead edits (e.g. off-by-one tweaks, proof-friendly refactorings).

23



– A \ P : attacks your proof missed (e.g. Rowhammer bitflips, timing leaks).
– ∃V ⊆ (P \A): worse edits that actually weaken security.

• Value of proofs, despite limits

1. Qualified guarantees: “system is secure if these precise (and extractable) assumptions
hold.”

2. Structured exploration: writing down state, spec, abstraction & proof uncovers bugs &
clarifies design.

• Defense in depth

– Even with a proved memory-safe engine, you still layer ASLR, canaries, sandboxing, etc.
– Backup measures mitigate the inevitable threat-model drift encountered in practice.

8.34 Automated, “Push-Button” Verification with Rosette & Servo

• Motivation: Eliminate

– Low-level memory/overflow bugs (buffer overrun, div0, UB).
– Logical errors (missing sanity checks, path-specific flaws).
– Design bugs (API flaws that break isolation or leak secrets).

• Illustrative UB in C:

– Multiply two 16bit uint16 t via c = (uint32 t)(a*b)

– -O0 yields correct a ∗ b, -O2 triggers signed-overflow UB and returns “wrong” value.
– GCC exploits “signed-overflow is UB” to optimize away.

⇒ even a one-line “innocent” routine can go wrong under real compilers.
• “Push-Button” Verification Stack:

Rosette → Servo → your verifier → SMT solver

– Rosette:

∗ Embeds your interpreter or DSL in a symbolic language.
∗ Lifts concrete interpreter into symbolic evaluator.
∗ Provides knobs (symbolic reflection, custom providers) to tune encodings.

– Servo:

∗ Framework atop Rosette for low-level code (RISC-V, LLVM IR, BPF).

∗ Builds “no-proof” verifiers: spec + implementation
Servo−−−→ SMT.

– Jitterbug:

∗ A Servo-based JIT-compiler verifier for LinuxBPF:

· Found and fixed real bugs in the upstream kernel.
· Shipped in Linux since March 2024.

• Symbolic vs. Bounded Encoding:

– Pure symbolic execution: forks at every branch, merges later → path-explosion.
– Bounded model-checking: one-step “merge” after each instruction → huge symbolic

terms.
– Rosette’s hybrid: uses type-guided merges to keep encoding size polynomial & precise.

• Profiling & Tuning “Magic Box”:

– Symbolic profiler spots expensive eval sites (e.g. symbolic PC in an interpreter).

24



– Custom provider (e.g. split-pc): force concrete cases on PC, collapse paths early.
– Iteratively “repair” your spec/interpreter until verification finishes.

• Retrofitting Classic Verifiers:

– Ported seL4-style security monitors (CERTiKOS, Nova, etc.) to RISC-V + Servo.
– Proved each system-call lemma (e.g. yield, alloc, exit) separately so that SMT can

handle it.
– Turned days of manual Coq proofs into ∼weeks of Servo setup per API.

• Practical Impact:

– Verified new BPF “JIT” compiler and plugged it into Linux kernel.
– Uncovered real bugs in both Linux core and ARM support libraries.
– Demonstrated “push-button” verification can enter production—low manual-proof over-

head.

8.35 Why Not Proofs? Engineering for Reliability

• The “Software Crisis” (1960s–’90s): Formal methods promised to tame exploding com-
plexity, but industrial uptake was limited.

• High-Reliability Case Studies:

– Therac-25 (1985): Sloppy UI+ concurrency bugs in radiation machine software → pa-
tient overdoses.

– Ariane5 (1996): Unhandled FP-to-integer overflow in Ada spec caused dual guidance-
computer failure → self-destruct.

– Telephone Exchanges (1970s–’90s): Carrier-grade “six-9s” availability achieved with
rigorous engineering, not proofs.

• Economics of Reliability:

– Only mission-critical (avionics, banking, cloud infra) can justify the cost of exhaustive
proofs.

– Most software (desktop apps, web services) tolerates occasional bugs—“approximate”
vs. “precise” software.

• Tony Hoare’s Recipe for Quality (1996):

1. Rigorous Design&Review: Inspect and cure specification flaws before coding.
2. Testing as QA: Use tests to drive specs, detect faults, and feed back into design—not

to “test in” quality.
3. Continuous Debugging: Fix problems immediately in development and production (De-

vOps loop).
4. Over-Engineering & Fault Isolation: Fail fast, restart components, isolate modules; ac-

cept redundancy.
5. Informal Math: Leverage discrete-math ideas (invariants, pre/postconditions) in every-

day specs.

• When to Turn to Formal Methods:

– Concurrency and failures—rare, adversarial interleavings that evade testing.
– Use lightweight modeling (TLA+/PlusCal+model-checking) to design-verify distributed

protocols (e.g. Amazon S3).
– Full machine-checked proofs reserved for small kernels or crypto stacks with huge con-

sequences.

25



• Other Key Lessons:

– DevOps&Agile: Developers operate their own code, enabling rapid feedback and regres-
sion control.

– Component Reuse & Moore’s Law: Off-the-shelf databases, languages, and GPUs toler-
ated by vast compute headroom.

– Technical Debt Awareness: Regularly repay code “debt” before it blocks future feature
delivery.

– Procurement and Partnership: Cooperative customer–vendor relationships crucial—antagonism
leads to failure.

26


