MIT 6.004 Computation Structures: Course Notes

Instructor: Silvina Hanlon

Spring 2017

1 Information Theory

- **Definition of Information:** Data that resolves uncertainty about a fact or circumstance.
- Quantifying Information (Shannon, 1948):
 - Random variable X with discrete outcomes x_i and probabilities p_i .
 - Information content of outcome x_i :

$$I(x_i) = \log_2 \frac{1}{p_i}.$$

- Units: bits.
- Examples:
 - Card drawn from 52: learning suit (heart) gives $\log_2(52/13) = 2$ bits.
 - Face card (J/Q/K): $\log_2(52/12) \approx 2.115$ bits.
 - Suicide King: $\log_2(52/1) \approx 5.700$ bits.
 - Coin flip: $\log_2(2/1) = 1$ bit.
 - Two dice: $\log_2(36/1) \approx 5.17$ bits (fractional bits interpret over many trials).

2 Entropy

• **Definition:** Average information content (expected value) of random variable X.

 $H(X) = \sum_{i} p_i \log_2 \frac{1}{p_i}.$

• **Interpretation:** Lower bound on the average number of bits required to encode values of *X*.

• Worked Example:

- Outcomes $\{A, B, C, D\}$ with probabilities $\{1/3, 1/2, 1/12, 1/12\}$.
- Information contents $\{1.585, 1, \ldots\}$, compute $H(X) \approx 1.626$ bits.

3 Encoding Schemes

3.1 Fixed-Length Encoding

- Each symbol assigned bit strings of equal length.
- Example: 4 symbols \rightarrow 2 bits each.
- Supports random access.

3.2 Variable-Length Encoding

- Symbols have bit strings of differing lengths.
- Shorter codes for higher-probability symbols.
- Must ensure uniquely decodable (prefix-free).
- Represented via binary trees: symbols at leaves.
- Example encoding: $\{A: 00, B: 1, C: 000, D: 001\}$.

4 Huffman Coding

- Algorithm to construct optimal prefix-free variable-length code.
- Repeatedly combine two least-probable symbols/subtrees.
- Yields minimal expected code length.

5 Error Detection and Correction

5.1 Hamming Distance

- Number of differing bit positions between two codewords.
- Single-bit error changes codeword by distance 1.

5.2 Parity Check

- Add parity bit to enforce even (or odd) number of 1s.
- Detects any single-bit error (min. distance 2).

5.3 Error Correction

- To correct up to E errors, require minimum Hamming distance 2E+1.
- Single-bit correction: distance 3 (e.g., Hamming codes).

6 Number Representations

6.1 Unsigned Binary

- N bits represent values $0 \dots 2^N 1$.
- Binary-to-decimal conversion: sum of bit weights.

6.2 Hexadecimal

- Radix-16 grouping of 4 bits per hex digit.
- Prefix 0x denotes hex literals.

6.3 Signed Representations

- Signed magnitude: separate sign bit (inefficient, two zeros).
- Two's complement: high-order bit negative weight.
- Range: -2^{N-1} to $2^{N-1}-1$; arithmetic via standard binary addition.
- Negation: bitwise complement + 1.

6.4 Worked Examples

• Example 1: Hat of Names

- A hat contains 5 women and 3 men (N = 8 possible names).
- You learn "the selected name is a man" \implies remaining possibilities M=3.
- Information conveyed:

$$I = \log_2 \frac{N}{M} = \log_2 \frac{8}{3} = \log_2 \left(\frac{1}{3/8}\right)$$
 bits.

• Example 2: 4-bit Two's Complement

- All 4-bit patterns $\implies N = 16$ equally likely values.
- You learn "the number is > 0" \implies positive outcomes M = 7.
- Information conveyed:

$$I = \log_2 \frac{N}{M} = \log_2 \frac{16}{7}$$
 bits.

7 Two's-Complement Representation

- Uses N bits to encode signed integers in range $[-2^{N-1}, 2^{N-1} 1]$.
- Bit weights:

$$\underbrace{-2^{N-1}}_{-2^{N-1}}, +2^{N-2}, 2^{N-3}, \dots, 2^1, 2^0.$$

- Positive values: MSB = 0
 - Example (6-bit): 001000

$$=2^3=8.$$

- To extend width, prepend zeros (e.g. 00001000 for 8 in 8bits).
- Negative values: MSB = 1
 - Example (6-bit): 101100

$$=-2^5+2^3+2^2=-32+8+4=-20.$$

- To extend width, prepend ones (e.g. 11101100 for -20 in 8bits).
- Negation formula:

$$-A = \widetilde{A} + 1,$$

where \widetilde{A} is the bitwise complement.

• Arithmetic:

$$A - B = A + (-B).$$

- Example: 6-bit 15 - 18

$$15 = 001111, \quad 18 = 010010,$$

$$-18 = 010010 + 1 = 101101 + 1 = 101110,$$

$$15 + (-18) = 001111 + 101110 = 111101,$$

interpret 111101: negate (000010 + 1) = 000011 = 3, so 111101 = -3.

 Overflow: occurs if adding two positives gives negative or two negatives gives positive.

8 Voltage-Based Image Encoding

• A black-and-white image can be represented point-by-point by a voltage: black = 0V, white = 1V, intermediate intensities = in-between voltages.

- To encode the information of Nbits per pixel, we must reliably distinguish 2^N distinct voltages in [0, 1] V.
- In practice, thermal noise and instrumentation limits put a cap on N—e.g. distinguishing four levels (2bits) is easy, but a million levels (20bits) is essentially impossible.
- Continuous scan: rasterize image left-to-right, top-to-bottom \rightarrow time-varying voltage waveform (early television).
- Continuous-value processing (COPY, INVERT) accumulates analog error ϵ at each stage; small errors blur and distort the final image.

9 Information Processing Blocks

- COPY block: output follows input voltage exactly (idealized).
- INVERT block: output = $1 V_{in}$ (negates intensity).
- Composition: wire blocks together like tinker-toys, predict system behavior by "black-box" rules without internal details.
- Failure mode: non-ideal gain and offset in each block \rightarrow accumulated error, fidelity loss grows with system depth.

10 Digital Abstraction

- Replace continuous voltages by a two-level encoding ("0" or "1") via thresholds.
- First cut: single threshold V_{TH} —impractical because small noise near threshold causes bit flips.
- Second cut: two thresholds V_L and V_H define

$$\begin{cases} V \leq V_L & \to 0, \\ V \geq V_H & \to 1, \\ V_L < V < V_H & \text{(forbidden zone)}. \end{cases}$$

• In the forbidden zone, converter may output either value or none—provides noise margin.

11 Combinational Digital Devices

- A device is *combinational* if it obeys the *static discipline*:
 - 1. Digital inputs: voltages below $V_{IL} \rightarrow 0$, above $V_{IH} \rightarrow 1$.

- 2. Digital outputs: voltages $\leq V_{OL}$ for "0", $\geq V_{OH}$ for "1".
- 3. Functional spec: for each input pattern, output is defined (truth table).
- 4. Timing spec: propagation delay t_{PD} bounds "valid-in \rightarrow valid-out" delay.
- Composition rules:
 - No directed cycles.
 - Each input connected exactly once to an input port, constant, or one output.
 - Guarantees the assembled system is itself combinational.

12 Signaling Specifications and Noise Margins

• Separate input and output thresholds:

$$V_{OL} < V_{IL} < V_{IH} < V_{OH}$$
.

- Low noise margin: $NM_L = V_{IL} V_{OL}$; High noise margin: $NM_H = V_{OH} V_{IH}$.
- \bullet Any valid output driven through noise up to NM still meets the next stage's input spec.
- \bullet Voltage-transfer characteristic (VTC): plot $V_{\rm out}$ vs. $V_{\rm in},$ must avoid "forbidden" regions.

13 MOSFETs and CMOS Logic

- MOSFET = voltage-controlled switch with four terminals (gate, source, drain, bulk).
- n-channel (NFET) used in pull-down networks; conducts when $V_{GS} > V_{th}$.
- p-channel (PFET) used in pull-up networks; conducts when $V_{GS} < V_{th}$ (threshold negative).
- **CMOS** inverter: one NFET to ground, one PFET to V_{DD} , gates tied to input.
 - Input "0" \rightarrow PFET on, NFET off \rightarrow output = 1.
 - Input "1" \rightarrow NFET on, PFET off \rightarrow output = 0.
 - Both briefly on during transition \rightarrow high gain, sharp switch.
- Complex gates: pull-up = complementary network of series/parallel PFETs to implement $\neg f$, pull-down = dual NFET network.

• **Timing:** t_{CD} (contamination delay) = lower bound from input invalid \rightarrow output invalid; t_{PD} = upper bound from input valid \rightarrow output valid.

14 Boolean Specification of Combinational Devices

14.1 Truth Tables

- A truth table exhaustively lists the output(s) of a device for every combination of its N binary inputs.
- There are 2^N rows. E.g. for N=3 inputs $\{A,B,C\}$, we have 8 rows $(000,001,\ldots,111)$.
- Truth tables are unambiguous, but grow exponentially large—e.g. N=64 would need 2^{64} rows!

14.2 Boolean Equations

• Rather than tabulate 2^N cases, we can write a formula using logical operations:

AND:
$$X \wedge Y$$
, OR: $X \vee Y$, NOT: $\neg X$, XOR: $X \oplus Y$.

- Interpret $0 \leftrightarrow \mathsf{FALSE}$, $1 \leftrightarrow \mathsf{TRUE}$.
- Example: if a 3-input device has output Y=1 on rows 2,4,7,8 of its truth table, then

$$Y = (\neg C \land \neg B \land A) \lor (\neg C \land B \land A) \lor (C \land \neg B \land A) \lor (C \land B \land A).$$

15 Sum-of-Products (SOP) Synthesis

- Sum-of-products: each minterm (product of literals) covers one row where output=1, then OR them together.
- Circuit recipe:
 - 1. Invert inputs as needed.
 - 2. Use one AND gate per product term.
 - 3. Use one OR gate to combine all product outputs.
- Library trade-offs: direct multi-input AND/OR vs. NAND+inverter chains for speed/area.

16 Karnaugh Maps and Logic Minimization

- Karnaugh map (K-map): lay out 2^N cells in a Gray-code grid so adjacent cells differ in one bit.
- A prime implicant is a largest rectangular group (size 2^k) of 1's; each gives a simplified product term.
- To minimize:
 - 1. Fill K-map with 1's for output=1 rows.
 - 2. Circle all prime implicants (allow wrap-around).
 - 3. Choose a minimal cover (select enough prime implicants to cover every 1).
 - 4. Translate each implicant into a product of literals that remain constant over that block.
- This yields a minimal SOP with fewer gates and reduced glitch potential (lenient implementation if all primes are used).