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1 Information Theory

e Definition of Information: Data that resolves uncertainty about a
fact or circumstance.
¢ Quantifying Information (Shannon, 1948):
— Random variable X with discrete outcomes x; and probabilities
bi-
— Information content of outcome x;:
I(zi) = log, l
(2
— Units: bits.
¢ Examples:
— Card drawn from 52: learning suit (heart) gives logy(52/13) = 2
bits.
Face card (J/Q/K): logy(52/12) ~ 2.115 bits.
— Suicide King: log,(52/1) & 5.700 bits.
— Coin flip: logy(2/1) = 1 bit.
— Two dice: logy(36/1) ~ 5.17 bits (fractional bits interpret over
many trials).

2 Entropy

e Definition: Average information content (expected value) of random
variable X.
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e Interpretation: Lower bound on the average number of bits required
to encode values of X.



¢ Worked Example:
— Outcomes {A, B, C, D} with probabilities {1/3,1/2,1/12,1/12}.
— Information contents {1.585,1, ...}, compute H(X) ~ 1.626 bits.

3 Encoding Schemes

3.1 Fixed-Length Encoding

e Each symbol assigned bit strings of equal length.
e Example: 4 symbols — 2 bits each.
e Supports random access.

3.2 Variable-Length Encoding

Symbols have bit strings of differing lengths.
Shorter codes for higher-probability symbols.

Must ensure uniquely decodable (prefix-free).
Represented via binary trees: symbols at leaves.
Example encoding: {A:00,B :1,C :000,D : 001}.

4 Huffman Coding

e Algorithm to construct optimal prefix-free variable-length code.
e Repeatedly combine two least-probable symbols/subtrees.
e Yields minimal expected code length.

5 Error Detection and Correction

5.1 Hamming Distance
e Number of differing bit positions between two codewords.
e Single-bit error changes codeword by distance 1.

5.2 Parity Check

e Add parity bit to enforce even (or odd) number of 1s.
e Detects any single-bit error (min. distance 2).



5.3

Error Correction

To correct up to E errors, require minimum Hamming distance 2E+1.
Single-bit correction: distance 3 (e.g., Hamming codes).

6 Number Representations

6.1

Unsigned Binary

e N bits represent values 0...2V — 1.
e Binary-to-decimal conversion: sum of bit weights.

6.2

Hexadecimal

e Radix-16 grouping of 4 bits per hex digit.
e Prefix 0x denotes hex literals.

6.3

6.4

Signed Representations

Signed magnitude: separate sign bit (inefficient, two zeros).

Two’s complement: high-order bit negative weight.

Range: —2V~1 to 2V~1 — 1; arithmetic via standard binary addition.
Negation: bitwise complement + 1.

Worked Examples

Example 1: Hat of Names
— A hat contains 5 women and 3 men (N = 8 possible names).
— You learn “the selected name is a man” = remaining possibil-
ities M = 3.
— Information conveyed:

N 8 .
I = log, v log, 3 = logQ(ﬁ) bits.

Example 2: 4-bit Two’s Complement
— All 4-bit patterns = N = 16 equally likely values.
— You learn “the number is > 07 = positive outcomes M = 7.
— Information conveyed:
N

16
I =log, i log, - bits.



Two’s-Complement Representation
e Uses N bits to encode signed integers in range [-2V~1, 2V=1 —1].
¢ Bit weights:
MSB

—

—oN=l oN=2 oN=3 = a2l 20
e Positive values: MSB = 0

— Example (6-bit): 001000
=2° =38.

— To extend width, prepend zeros (e.g. 00001000 for 8 in 8bits).
e Negative values: MSB = 1
— Example (6-bit): 101100

=24 923492 _3248+4+4=-20.

— To extend width, prepend ones (e.g. 11101100 for -20 in 8bits).
e Negation formula: B
—A=A+1,

where A is the bitwise complement.
e Arithmetic:
A—-B=A+(-B).

— Ezample: 6-bit 15 — 18
15 =001111, 18 = 010010,

~18 = 010010 + 1 = 101101 + 1 = 101110,
15 + (—18) = 001111 + 101110 = 111101,
interpret 111101 : negate (000010 + 1) = 000011 = 3, so 111101 = —3.

— Overflow: occurs if adding two positives gives negative or two
negatives gives positive.
Voltage—Based Image Encoding

e A black-and-white image can be represented point-by-point by a volt-
age: black = 0V, white = 1V, intermediate intensities = in-between
voltages.
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To encode the information of Nbits per pixel, we must reliably distin-
guish 2V distinct voltages in [0,1] V.

In practice, thermal noise and instrumentation limits put a cap on
N—e.g. distinguishing four levels (2bits) is easy, but a million levels
(20bits) is essentially impossible.

Continuous scan: rasterize image left-to-right, top-to-bottom — time-
varying voltage waveform (early television).

Continuous-value processing (COPY, INVERT) accumulates analog
error € at each stage; small errors blur and distort the final image.

Information Processing Blocks

e COPY block: output follows input voltage exactly (idealized).
e INVERT block: output =1 — Vj, (negates intensity).
o (Composition: wire blocks together like tinker-toys, predict system be-

havior by “black-box” rules without internal details.
Failure mode: non-ideal gain and offset in each block — accumulated
error, fidelity loss grows with system depth.

Digital Abstraction

Replace continuous voltages by a two-level encoding (“0” or “1”) via
thresholds.

First cut: single threshold V- g—impractical because small noise near
threshold causes bit flips.

Second cut: two thresholds V;, and Vg define

Vv — 0,
V>Vy — 1,
VL, <V < Vg (forbidden zone).

In the forbidden zone, converter may output either value or none—provides

noise margin.

Combinational Digital Devices

A device is combinational if it obeys the static discipline:

1. Digital inputs: voltages below Vi — 0, above V;g — 1.



2. Digital outputs: voltages < Vpr, for “07, > Vpop for “17.

3. Functional spec: for each input pattern, output is defined (truth
table).

4. Timing spec: propagation delay tpp bounds “valid-in—valid-
out” delay.

e Composition rules:
— No directed cycles.
— Each input connected exactly once to an input port, constant, or
one output.
— Guarantees the assembled system is itself combinational.

12 Signaling Specifications and Noise Margins
e Separate input and output thresholds:
Vor < Vi <Vig <Vomu.

o Low noise margin: NMyp = Vi — Vor; High noise margin: NMg =
Vou — Vin.

e Any valid output driven through noise up to N M still meets the next
stage’s input spec.

e Voltage-transfer characteristic (VTC): plot Vout vs. Vin, must avoid
“forbidden” regions.

13 MOSFETs and CMOS Logic

e MOSFET = voltage-controlled switch with four terminals (gate, source,
drain, bulk).
o n-channel (NFET) used in pull-down networks; conducts when Vg >
Vin-
e p-channel (PFET) used in pull-up networks; conducts when Vg < Vi,
(threshold negative).
e CMOS inverter: one NFET to ground, one PFET to Vpp, gates
tied to input.
— Input “0” — PFET on, NFET off — output = 1.
— Input “1”7 — NFET on, PFET off — output = 0.
— Both briefly on during transition — high gain, sharp switch.
e Complex gates: pull-up = complementary network of series/parallel
PFETSs to implement —f, pull-down = dual NFET network.



e Timing: tcp (contamination delay) = lower bound from input in-
valid—output invalid; tpp = upper bound from input valid—output
valid.

14 Boolean Specification of Combinational Devices

14.1 Truth Tables

e A truth table exhaustively lists the output(s) of a device for every
combination of its N binary inputs.

e There are 2V rows. E.g. for N = 3 inputs {4, B,C}, we have 8 rows
(000,001,...,111).

e Truth tables are unambiguous, but grow exponentially large—e.g. N =
64 would need 264 rows!

14.2 Boolean Equations

e Rather than tabulate 2V cases, we can write a formula using logical
operations:

AND: XAY, OR: XVY, NOT: -X, XOR: X&Y.

e Interpret 0+ FALSE, 1+ TRUE.
e Example: if a 3-input device has output Y = 1 on rows 2,4,7,8 of its
truth table, then

Y =(~-CA-BAA) V (-CABAA) V (CA-BANA) V (CABAA).

15 Sum-of-Products (SOP) Synthesis

e Sum-of-products: each minterm (product of literals) covers one row
where output=1, then OR them together.
e (Circuit recipe:

1. Invert inputs as needed.
2. Use one AND gate per product term.
3. Use one OR gate to combine all product outputs.

e Library trade-offs: direct multi-input AND/OR vs. NAND-inverter
chains for speed/area.



16 Karnaugh Maps and Logic Minimization

e Karnaugh map (K-map): lay out 2V cells in a Gray-code grid so
adjacent cells differ in one bit.

e A prime implicant is a largest rectangular group (size 2¥) of 1’s; each
gives a simplified product term.

e To minimize:

1. Fill K-map with 1’s for output=1 rows.
2. Circle all prime implicants (allow wrap-around).

3. Choose a minimal cover (select enough prime implicants to cover
every 1).

4. Translate each implicant into a product of literals that remain
constant over that block.

e This yields a minimal SOP with fewer gates and reduced glitch poten-
tial (lenient implementation if all primes are used).
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